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MSE 468 Week 2

It’s a quantum world!

Image from Wikipedia
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• Did everybody manage to run in the VM? 

• Second form for this week (by next Thursday 6th 
March) - last form hopefully! 
• Test access to VPN (in case you need to work from 

outside the campus) 
• Test running on the Helvetios supercomputer at 

EPFL (useful for lab 2/3/4)

Usage of the VM (and new form this week)
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AROSA, CANTON DES GRISONS, 27 DÉCEMBRE 1925

At the moment I am struggling with a new atomic 
theory. I am very optimistic about this thing and 
expect that if I can only… solve it, it will be very 
beautiful.  
	 	 	 	 	 Erwin Schrödinger
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                        MOVE TO 1929…

the underlying physical laws necessary for the mathematical theory of a 
large part of physics and the whole of chemistry are thus completely known, 
and the difficulty is only that the exact application of these laws leads to 
equations much too complicated to be soluble.  

it therefore becomes desirable that approximate practical methods of 
applying quantum mechanics should be developed, which can lead to an 
explanation of the main features of complex atomic systems without too 
much computation. 

                       P.A.M. DIRAC, PROC. ROY. SOC. 123, 714 (1929)
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…AND 1963

It is more important to have beauty in one's equations than to have them fit 
experiment... [...] 

if there is no complete agreement between the results of one’s work and the 
experiment, one should not allow oneself to be too discouraged, because 
the discrepancy may well be due to minor features that are not properly 
taken into account and that will get cleared up with further development of 
the theory. 

                       P.A.M. DIRAC, SCIENTIFIC AMERICAN 1963
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NATURE,  OCT 2014 

THE TOP 100 PAPERS: 
12 papers on density-
functional theory in 
the top-100 most 
cited papers in the 
entire scientific 
literature, ever.
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The challenges

•  Accuracy  
•  Size 
•  Time
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Why do we need quantum mechanics?

• Potential models: limited transferability 
(not universal) 

• They do not describe bond breaking 

• Explicit treatment of electrons needed for 
electronic, optical, magnetic properties
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(Quantum) electrons hold matter together

• Atoms are made by 
massive, point-like nuclei 
(protons+neutrons) 

• Surrounded by tightly 
bound, rigid shells of 
core electrons 

• Bound together by a 
glue of valence electrons

Simulation of methane 
on a Pt surface
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Why do we need quantum mechanics? 
1) Bonding and Structure

Paraelectric (cubic) and ferroelectric (tetragonal) phases of PbTiO3
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Why do we need quantum mechanics? 
2) Electronic, optical, magnetic properties

Particle size tunes the emission wavelength of CdSe quantum dots
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Why do we need quantum mechanics? 
3) Dynamics, chemistry

Initial state Transition state Final state

Figure from https://suncat.stanford.edu/ 
Charge density difference isosurfaces for the Heyrovsky reaction. 
(See also Chen, Nørskov, J.Phys.Chem.Lett. 7, 1686−1690 (2016))
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Example: Diamond from First Principles
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Some more examples

Phonons of semiconductors 
computed by DFT, 
compared with experiments

From Baroni et al., Rev. Mod. Phys. 73, 515 (2001)
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The total energy bias
	 “If the only tool if you have is a hammer,  

every problem starts looking like a nail”

	 Ab-initio spectroscopies and microscopies 

• Vibrations and  phonons 
• Infrared 
• Raman 
• Thermal conductance 
• Superconductivity 
• Nuclear magnetic resonance 
• Core level shifts 
• Scanning tunnelling microscopy 

• ...
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What can first-principles do for me ? 

• Fairly straightforward, but fundamental: equilibrium structures, 
thermodynamic stability, thermomechanic properties, electronic 
structure, energetics and reactions…  

• Harder: vibrational and magnetic spectroscopies (IR, Raman, NMR, EPR), 
XPS/XANES, BCS superconductivity, basic optical properties (TDDFT), 
phase diagrams 

• Jedi master: thermal and electrical conductivities, complex optical 
properties (GW+BSE).  

           Predictive accuracy is a key challenge
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Material Properties From First-Principles

• Energy scale at our living conditions (kBT, for T=300 K): 0.025 eV 
(kinetic energy of an atom in an ideal gas: 3/2 kBT). 

• Differences in bonding energies are within one order of magnitude of 
~0.3 eV (hydrogen bond).  

• Binding energy of an electron to a proton (hydrogen): 
	 13.606 eV = 1 Rydberg (Ry) = 0.5  Hartree (Ha) = 0.5 a.u. 

• Energy of 1s electrons in a Pt atom (Z=78): ~80,000 eV (energy ∝Z2) 
(https://xdb.lbl.gov/Section1/Table_1-1.pdf)
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Wave-particle Duality

• Waves have particle-like properties: 
– Photoelectric effect: quanta (photons) are exchanged 

discretely 
– Energy spectrum of an incandescent body looks like a gas of 

very hot particles  

• Particles have wave-like properties: 
– Electrons in an atom are like standing waves (harmonics) in 

an organ pipe 
– Electrons beams can be diffracted, and we can see the 

fringes

https://xdb.lbl.gov/Section1/Table_1-1.pdf
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Wave-particle Duality

• Position and momentum of a particle cannot be 
simultaneously measured with arbitrarily high 
precision 

• Minimum for the product of the uncertainties:

<latexit sha1_base64="xMBSDyZTvh2I9ctbIAmSuOLIXq0=">AAACDXicbVC7TsMwFHXKq5RXgJHFoiCxECVQHmMFC2IqEn1ITagcx2mtOnFkO4gq6g+w8CssDCDEys7G3+C2GaDlSFc6Oude3XuPnzAqlW1/G4W5+YXFpeJyaWV1bX3D3NxqSJ4KTOqYMy5aPpKE0ZjUFVWMtBJBUOQz0vT7lyO/eU+EpDy+VYOEeBHqxjSkGCktdcw9t+cjAV2UJII/QMeyT1wccAUd+y47PK4M4TWUHbNsW/YYcJY4OSmDHLWO+eUGHKcRiRVmSMq2YyfKy5BQFDMyLLmpJAnCfdQlbU1jFBHpZeNvhnBfKwEMudAVKzhWf09kKJJyEPm6M0KqJ6e9kfif105VeO5lNE5SRWI8WRSmDCoOR9HAgAqCFRtogrCg+laIe0ggrHSAJR2CM/3yLGkcWc6pZd9UytWLPI4i2AG74AA44AxUwRWogTrA4BE8g1fwZjwZL8a78TFpLRj5zDb4A+PzB9CLmXk=</latexit>

~ ⇡ 1.05 · 10�34Js
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From https://vqm.uni-graz.at

When is a particle like a wave ?
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When is a particle like a wave ?

• Einstein (1905): light is emitted and absorbed discretely 
(photons; photoelectric effect) 

• De Broglie (1924): all matter is a wave 
The smaller the dimension, the more 
wave-like the behaviour

Images from Wikipedia
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Typical length scales

• Atomic diameter? 
• 0.1 nm (1 angstrom) 

• Electron accelerated through 100V: 0.12 nm 
• See: electron microscope 

• Nitrogen molecule at 300K: 0.03 nm 
• Baseball at 150 km/h: 10-25 nm 

• Wavelength of heavy objects not relevant for bonding

<latexit sha1_base64="fmJ32eufR2Wn96/uEtYRAyApGUA=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0R9SIERfAYwTwgWcLsZDYZM49lZlYIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrSjgz1ve/vaXlldW19cJGcXNre2e3tLffMCrVhNaJ4kq3ImwoZ5LWLbOcthJNsYg4bUbDm4nffKLaMCUf7CihocB9yWJGsHVS4xZdoYR0S2W/4k+BFkmQkzLkqHVLX52eIqmg0hKOjWkHfmLDDGvLCKfjYic1NMFkiPu07ajEgpowm147RsdO6aFYaVfSoqn6eyLDwpiRiFynwHZg5r2J+J/XTm18GWZMJqmlkswWxSlHVqHJ66jHNCWWjxzBRDN3KyIDrDGxLqCiCyGYf3mRNE4rwXnFvz8rV6/zOApwCEdwAgFcQBXuoAZ1IPAIz/AKb57yXrx372PWuuTlMwfwB97nD1PIjlA=</latexit>

E = pc
<latexit sha1_base64="AU8G0/ocRvDqkYGNMdNGFN60MQM="></latexit>

E =
1

2
mv2 =

p2

2m
) p =

p
2mE

Massless particles 
(photons) Massive non-relativistic particles
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There can be quantum effects in the 
nuclear motion

Quantum paraelectricity in SrTiO3 (Vanderbilt)Hydrated hydroxide diffusion (Tuckerman, 
Marx, and Parrinello)
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Even at large scales!
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So, What Is It?

It’s the mechanics of waves, instead of classical particles
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Mechanics of a Particle

The sum of the kinetic and potential energy is conserved
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Description of a Wave

The wave is an excitation (a 
vibration): we need to know 
the amplitude of the 
excitation at every point and 
at every instant

<latexit sha1_base64="mh+odVeiX1X6otqD+yv5EC4y8QE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkhJRKoboejGZQX7gCaUyXTSDp08mLkplNiFv+LGhSJu/Q13/o2TNgutHrjcwzn3MneOFwuuwLK+jMLS8srqWnG9tLG5tb1j7u61VJRIypo0EpHseEQxwUPWBA6CdWLJSOAJ1vZGN5nfHjOpeBTewyRmbkAGIfc5JaClnnngxIrjK5y1ijNmFMtTDCc9s2xVrRnwX2LnpIxyNHrmp9OPaBKwEKggSnVtKwY3JRI4FWxachLFYkJHZMC6moYkYMpNZ/dP8bFW+tiPpK4Q8Ez9uZGSQKlJ4OnJgMBQLXqZ+J/XTcC/dFMexgmwkM4f8hOBIcJZGLjPJaMgJpoQKrm+FdMhkYSCjqykQ7AXv/yXtM6qdq1auzsv16/zOIroEB2hCrLRBaqjW9RATUTRA3pCL+jVeDSejTfjfT5aMPKdffQLxsc3rqKUnA==</latexit>

ω = ω(εr, t)
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Stationary Schrödinger’s equation 
(Newton’s 2nd law for quantum objects)

1925-onwards: E. Schrödinger (wave equation), W. Heisenberg 
(matrix formulation), P.A.M. Dirac (relativistic) 

<latexit sha1_base64="wb3gRdldRVm5y3i3mR46mjJRoUE="></latexit>[
→ ⊋2
2m

↑2 + V (ωr)

]
ε(ωr) = Eε(ωr)
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Interpretation of the Quantum 
Wavefunction (Copenhagen)

is the probability of finding an electron 
in r, when its wavefunction is ψi 

is the value of the energy for the electron, 
when its wavefunction is ψi 

<latexit sha1_base64="cJMrYTkgyyooWjcVkA48LnfTXJU=">AAAB/XicbVDJSgNBEO1xjXEbl5uXxiDES5gJEj0GvXiMYBbIjENPpyZp0rPQ3ROIk+CvePGgiFf/w5t/Y2c5aOKDgsd7VVTV8xPOpLKsb2NldW19YzO3ld/e2d3bNw8OGzJOBYU6jXksWj6RwFkEdcUUh1YigIQ+h6bfv5n4zQEIyeLoXg0TcEPSjVjAKFFa8sxjZ+Qkknms6AyAYnHujB7KnlmwStYUeJnYc1JAc9Q888vpxDQNIVKUEynbtpUoNyNCMcphnHdSCQmhfdKFtqYRCUG62fT6MT7TSgcHsdAVKTxVf09kJJRyGPq6MySqJxe9ifif105VcOVmLEpSBRGdLQpSjlWMJ1HgDhNAFR9qQqhg+lZMe0QQqnRgeR2CvfjyMmmUS3alVLm7KFSv53Hk0Ak6RUVko0tURbeohuqIokf0jF7Rm/FkvBjvxsesdcWYzxyhPzA+fwCTwJSr</latexit>

→ωi(εr)→2

<latexit sha1_base64="IpIlRq2oWMtpvzvtovno/de0Sjw="></latexit>∫
ω→
i (εr)

[
→ ⊋2
2m

↑2 + V (εr)

]
ωi(εr)dεr = Ei
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• classical momentum         →  
                      →  gradient operator  

• classical position         →  
                      →  multiplicative operator 

From classical mechanics to operators

p!
Ñ-
!
"i

r!

r̂
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Orthogonality, Expectation Values, and 
Dirac’s <bra|kets>

Ket

Orthonormal wavefunctions

Expectation value of an operator (here: Hamiltonian H)

For Hermitian operators                   : expectation values are real numbers
<latexit sha1_base64="Kwzi0nft0h72x090bnOVHCpQLP0=">AAACE3icbZBLSgNBEIZ74ivGV9SFCzeNQXAVZkTUjRB0484I5gFJDDWdStKk50F3jRBCjuEJ3OoJ3IlbD+ABvIedx8Ik/tDw8VcVVf37sZKGXPfbSS0tr6yupdczG5tb2zvZ3b2yiRItsCQiFemqDwaVDLFEkhRWY40Q+Aorfu9mVK88oTYyCh+oH2MjgE4o21IAWauZPah3gfgdv+ITeKy3oNNB3czm3Lw7Fl8Ebwo5NlWxmf2ptyKRBBiSUGBMzXNjagxAkxQKh5l6YjAG0YMO1iyGEKBpDMYfGPJj67R4O9L2hcTH7t+JAQTG9APfdgZAXTNfG5n/1WoJtS8bAxnGCWEoJovaieIU8VEavCU1ClJ9CyC0tLdy0QUNgmxmM1t8DT2koc3Fm09hEcqnee88796f5QrX04TS7JAdsRPmsQtWYLesyEpMsCF7Ya/szXl23p0P53PSmnKmM/tsRs7XL+ojnZ8=</latexit>

Ô = Ô
†

<latexit sha1_base64="KmCXOL4YiFqtdE1AQT5DdJlAMbs="></latexit>∫
ω
→
i (εr)

[
→ ⊋2
2m

↑2 + V (εr)

]
ωi(εr)dεr = ↓ωi|Ĥ|ωi↔ = Ei

<latexit sha1_base64="YxWP+rKiGhXvZCapPt4JyEQqUvA="></latexit>∫
ω→
i (εr)ωj(εr)dεr = →ωi|ωj↑ = ϑij

<latexit sha1_base64="wwD7TUmm//zzX6rTWrgMqYCh1cA=">AAACHHicbVDLSgMxFM3UV62vUZdugkWomzIjUt0IRTcuK9gHdIaSSW/b0MyDJFMoQ7d+hl/gVr/AnbgV/AD/w8x0Frb1QMjJOfdyb44XcSaVZX0bhbX1jc2t4nZpZ3dv/8A8PGrJMBYUmjTkoeh4RAJnATQVUxw6kQDiexza3vgu9dsTEJKFwaOaRuD6ZBiwAaNEaalnYieSDN9kV8WZAMXiPH2OQSWpNuuZZatqZcCrxM5JGeVo9Mwfpx/S2IdAUU6k7NpWpNyECMUoh1nJiSVEhI7JELqaBsQH6SbZT2b4TCt9PAiFPoHCmfq3IyG+lFPf05U+USO57KXif143VoNrN2FBFCsI6HzQIOZYhTiNBfeZAKr4VBNCBdO7YjoiglClw1uY4gmiw0lzsZdTWCWti6pdq9YeLsv12zyhIjpBp6iCbHSF6ugeNVATUfSEXtArejOejXfjw/iclxaMvOcYLcD4+gXdy6FV</latexit>

ω = ω(εr) = |ω→

<latexit sha1_base64="Gth8xYw6UA19sZN15pcBaYI1esE="></latexit>

p → ↑i⊋ω↓ ↔ p2

2m
→ ↑ ⊋2

2m
↓2
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Eigenvectors with different eigenvalues 
are orthogonal

<latexit sha1_base64="DH6IptaOaG7KE5aMiLZk5M7NfSo=">AAACIXicbZDLSsNAFIYnXmu9RV26GSyFurAkRaoboSgFlxXsBZoQJtNJO3RyYWYilJgn8DF8Arf6BO7Enbj2PZymWdjWA8P8/P85nJnPjRgV0jC+tJXVtfWNzcJWcXtnd29fPzjsiDDmmLRxyELec5EgjAakLalkpBdxgnyXka47vpnm3QfCBQ2DezmJiO2jYUA9ipFUlqOXK02nBs9g0zFPLZejMZGJFQnq1B6zy0zhFTQcvWRUjazgsjBzUQJ5tRz9xxqEOPZJIDFDQvRNI5J2grikmJG0aMWCRAiP0ZD0lQyQT4SdZN9JYVk5A+iFXJ1Awsz9O5EgX4iJ76pOH8mRWMym5n9ZP5bepZ3QIIolCfBskRczKEM4ZQMHlBMs2UQJhDlVb4V4hDjCUhGc2zIjlSou5iKFZdGpVc16tX53Xmpc54QK4BicgAowwQVogFvQAm2AwRN4Aa/gTXvW3rUP7XPWuqLlM0dgrrTvXwAYolA=</latexit>

(E2 → E1) ↑ω2|ω1↓ = 0

<latexit sha1_base64="Hcr+ZvcRAhA81kVogeY60oYzjLw=">AAACP3icbVDLSsNAFJ34rPUVdelmsCiuSlKkuhGKReiygn1AE8JkOmmHTiZhZiKU0A/yM/wCt/YDxJ24deekzaIPDwwczjmXe+f4MaNSWdbU2Njc2t7ZLewV9w8Oj47Nk9O2jBKBSQtHLBJdH0nCKCctRRUj3VgQFPqMdPxRPfM7L0RIGvFnNY6JG6IBpwHFSGnJM+sNZ0RU6sSSevYEXt3DR89elBynuBCp5JHKouSZJatszQDXiZ2TEsjR9MxPpx/hJCRcYYak7NlWrNwUCUUxI5Oik0gSIzxCA9LTlKOQSDedfXYCL7XSh0Ek9OMKztTFiRSFUo5DXydDpIZy1cvE/7xeooI7N6U8ThTheL4oSBhUEcyag30qCFZsrAnCgupbIR4igbDS/S5t8QXS9WS92KstrJN2pWxXy9Wnm1LtIW+oAM7BBbgGNrgFNdAATdACGLyCd/ABpsab8WV8Gz/z6IaRz5yBJRi/fz2ErzE=</latexit>

H |ω1→ = E1 |ω1→
H |ω2→ = E2 |ω2→

If instead they have the same eigenvalue, they are not required 
to be orthogonal, but can always chosen to be orthogonal
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Free electron ψ(x)

A plane wave

<latexit sha1_base64="5GPA1eVinyjOwbP/+U4qm6n3y68="></latexit>

→ ⊋2
2m

↑2ω(x) = Eω(x)
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Free electron ψ(x)

A plane wave

<latexit sha1_base64="5GPA1eVinyjOwbP/+U4qm6n3y68="></latexit>

→ ⊋2
2m

↑2ω(x) = Eω(x) <latexit sha1_base64="MC7VK3y/F5tnJ/NJgrC8QbGr+bY="></latexit>

p → ↑i⊋ ω

ωx
↓ ↔εk|p|εk↗

↔εk|εk↗
= ⊋k

<latexit sha1_base64="EpiO2Ci2YKRiVYQ5gIImlWSSDTY=">AAACEXicbVDLSsNAFJ34rPUVFVduBotQNyURqS4UKm5cVrAPaGOYTG/aIZMHMxNpCf0Kv8CtfoE7cesX+AH+h0mbhW09cOFwzr2cy3EizqQyjG9taXlldW29sFHc3Nre2dX39psyjAWFBg15KNoOkcBZAA3FFId2JID4DoeW491mfusJhGRh8KBGEVg+6QfMZZSoVLL1w24kme2Vh6f4Gt9geEyYNxzbesmoGBPgRWLmpIRy1G39p9sLaexDoCgnUnZMI1JWQoRilMO42I0lRIR6pA+dlAbEB2klk/fH+CRVetgNRTqBwhP170VCfClHvpNu+kQN5LyXif95nVi5l1bCgihWENBpkBtzrEKcdYF7TABVfJQSQgVLf8V0QAShKm1sJsURxAOV9WLOt7BImmcVs1qp3p+Xald5QwV0hI5RGZnoAtXQHaqjBqIoQS/oFb1pz9q79qF9TleXtPzmAM1A+/oFrrWc+g==</latexit>

ωk(x) = Aeikx

<latexit sha1_base64="kTcyNXWR2atq0L0IU40SCrBdiZU="></latexit>

E =
→ωk|H|ωk↑
→ωk|ωk↑

=
⊋2k2
2m
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In more than 1D (in 3D)
<latexit sha1_base64="RWEcge4Az7S6D5n3/nn4x3289+Q="></latexit>

ω→f =

(
εf

εx
,
εf

εy
,
εf

εz

)

<latexit sha1_base64="bihPxiUNaE1a9YGDRVu+YPjdlN8="></latexit>

→2f = ω→ · (ω→f) =
ε2f

εx2
+

ε2f

εy2
+

ε2f

εz2

<latexit sha1_base64="nTvRIzkU4tCz9XTaM01SFsh2+Ow="></latexit>

→ωωk|εp|ωωk↑
→ωωk|ωωk↑

= ⊋εk
<latexit sha1_base64="mjwCnAZGcwAf0x2ZFWD1zfZ1n90="></latexit>

E =
→ωωk|H|ωωk↑
→ωωk|ωωk↑

=
⊋2|εk|2
2m

For a free electron, V=0, and we can separate variables writing
<latexit sha1_base64="kLRFm9Mwkpk/UeL3aEGUIz1N3GI="></latexit>

ω(x, y, z) = εx(x)εy(y)εz(z)
<latexit sha1_base64="n0cnCUA6zWXSL9113qUp94jsdd0="></latexit>

ωx(x) = Axe
ikxx, . . . → εωk(ϑr) = A→ei

ωk·ωr
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Infinite Square Well

Find plane-wave solutions 
subject to boundary conditions

<latexit sha1_base64="8URxtShcU+Cx6tUIeetk3WaAOaY=">AAACU3icbZDPbtNAEMY3boESKKRw5LIiAtJLZFuo9FCkIoTEsUikqZRNrPFmnKyyXlu746qR5UfrY3DgjLjBE3Bh8+dAW0Za7advvtGMfmmplaMw/N4Kdnbv3X+w97D96PH+k6edg2fnrqisxIEsdGEvUnColcEBKdJ4UVqEPNU4TBcfV/3hJVqnCvOVliWOc5gZlSkJ5K2kMxSlU4npXR3y1+/5hzfCKSM0ZtQTmQVZG1EqftXU0AirZnM6FKL9KTGr8CYg5inYSexjk7ip4xz8ZyZx0umG/XBd/K6ItqLLtnWWdH6KaSGrHA1JDc6NorCkcQ2WlNTYtEXlsAS5gBmOvDSQoxvXawANf+WdKc8K658hvnb/naghd26Zpz6ZA83d7d7K/F9vVFF2PK6VKStCIzeLskpzKviKJp8qi5L00guQVvlbuZyD50Ke+Y0tqYUFUuO5RLcp3BXncT866h99eds9PdkS2mMv2EvWYxF7x07ZZ3bGBkyya/aD/WK/W99af4Ig2N1Eg9Z25jm7UcH+Xw78s/E=</latexit>

ωn(x) = A→ sin
(nεx

a

)

En =
⊋2ε2

2ma2
n2
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Quantum confinement in quantum dots
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Metal Surfaces (I)
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Metal Surfaces (II)
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Metal Surfaces (III)

From http://www.quantum-physics.polytechnique.fr 

http://www.quantum-physics.polytechnique.fr/
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Quantum tunneling

• Energy of the tunnelled particle is the same 
• Probability amplitude is decreased

Figure from Wikipedia

STM image of graphite surface
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Finite Square Well
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Quantum Applets

• Used to be in Java, now just some videos left 
(and some new Javascript animations)

http://www.quantum-physics.polytechnique.fr 
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Quantum Applets

 

http://www.osscar.org

https://osscar-quantum-mechanics.materialscloud.io

http://www.quantum-physics.polytechnique.fr/
https://osscar-quantum-mechanics.materialscloud.io
http://www.osscar.org
https://osscar-quantum-mechanics.materialscloud.io
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Try and modify them interactively 
on noto.epfl.ch

• noto.epfl.ch: JupyterLab instance provided by EPFL 

• Login with your EPFL credentials 

• Press eye icon on the bar 
to hide code and just see outputs

https://noto.epfl.ch/hub/user-redirect/git-pull?
repo=https%3A%2F%2Fgithub.com%2Fosscar-org%2Fquantum-
mechanics&urlpath=lab%2Ftree%2Fquantum-
mechanics%2Fnotebook%2Findex.ipynb&branch=master
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Some of the available apps on OSSCAR

http://noto.epfl.ch
http://noto.epfl.ch
https://noto.epfl.ch/hub/user-redirect/git-pull?repo=https://github.com/osscar-org/quantum-mechanics&urlpath=lab/tree/quantum-mechanics/notebook/index.ipynb&branch=master
https://noto.epfl.ch/hub/user-redirect/git-pull?repo=https://github.com/osscar-org/quantum-mechanics&urlpath=lab/tree/quantum-mechanics/notebook/index.ipynb&branch=master
https://noto.epfl.ch/hub/user-redirect/git-pull?repo=https://github.com/osscar-org/quantum-mechanics&urlpath=lab/tree/quantum-mechanics/notebook/index.ipynb&branch=master
https://noto.epfl.ch/hub/user-redirect/git-pull?repo=https://github.com/osscar-org/quantum-mechanics&urlpath=lab/tree/quantum-mechanics/notebook/index.ipynb&branch=master
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Quantum atoms
Coulomb interaction between point-like nucleus and electron:

We can write the Laplacian operator in spherical coordinates

We can separate variables and solve independently the radial 
part, while having always the same angular part for any radial V:

<latexit sha1_base64="bjiIj7RohrONH8U5mMUrrfIX/pA=">AAACG3icbVDLSgNBEJz1GeMr6tHLYBASkLAbRL0IohePUYwPsmGZnXSSIbOzy0yvEJb8hxd/xYsHRTwJHvwbJ4+DGgsaiqpuurvCRAqDrvvlzMzOzS8s5pbyyyura+uFjc1rE6eaQ53HMta3ITMghYI6CpRwm2hgUSjhJuydDf2be9BGxOoK+wk0I9ZRoi04QysFhapfMyLIlIwGJf8eONVlekwvh8qgpMt3QTZysAvI9qifdEU5KBTdijsCnSbehBTJBLWg8OG3Yp5GoJBLZkzDcxNsZkyj4BIGeT81kDDeYx1oWKpYBKaZjX4b0F2rtGg71rYU0pH6cyJjkTH9KLSdEcOu+esNxf+8Rorto2YmVJIiKD5e1E4lxZgOg6ItoYGj7FvCuBb2Vsq7TDOONs68DcH7+/I0ua5WvIOKe7FfPDmdxJEj22SHlIhHDskJOSc1UiecPJAn8kJenUfn2Xlz3setM85kZov8gvP5DS6FoD8=</latexit>

 nlm(~r) = Rnl(r)Ylm(✓,�)
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Solutions in a Coulomb Potential: the 
Periodic Table

http://www.orbitals.com/orb/orbtable.htm

n: principal quantum number: 1, 2, 3, ... 
l: azimuthal quantum number: 0, 1, ..., n-1 
m: magnetic quantum number: 
       -l, -(l-1), ..., 0., ..., (l-1), l

<latexit sha1_base64="bjiIj7RohrONH8U5mMUrrfIX/pA=">AAACG3icbVDLSgNBEJz1GeMr6tHLYBASkLAbRL0IohePUYwPsmGZnXSSIbOzy0yvEJb8hxd/xYsHRTwJHvwbJ4+DGgsaiqpuurvCRAqDrvvlzMzOzS8s5pbyyyura+uFjc1rE6eaQ53HMta3ITMghYI6CpRwm2hgUSjhJuydDf2be9BGxOoK+wk0I9ZRoi04QysFhapfMyLIlIwGJf8eONVlekwvh8qgpMt3QTZysAvI9qifdEU5KBTdijsCnSbehBTJBLWg8OG3Yp5GoJBLZkzDcxNsZkyj4BIGeT81kDDeYx1oWKpYBKaZjX4b0F2rtGg71rYU0pH6cyJjkTH9KLSdEcOu+esNxf+8Rorto2YmVJIiKD5e1E4lxZgOg6ItoYGj7FvCuBb2Vsq7TDOONs68DcH7+/I0ua5WvIOKe7FfPDmdxJEj22SHlIhHDskJOSc1UiecPJAn8kJenUfn2Xlz3setM85kZov8gvP5DS6FoD8=</latexit>

 nlm(~r) = Rnl(r)Ylm(✓,�)

http://www.orbitals.com/orb/orbtable.htm
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Hydrogen atom orbitals
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Two-electron atom

Many-electron atom
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Complexity of the many-body Ψ

“...Some form of approximation is essential, and this would mean the 
construction of tables. The tabulation function of one variable requires a 
page, of two variables a volume and of three variables a library; but the 
full specification of a single wave function of neutral iron (Z=26) is a 
function of 78 variables. It would be rather crude to restrict to 10 the 
number of values of each variable at which to tabulate this function, but 
even so, full tabulation would require 1078 entries.” 

Douglas R Hartree 
Charles G. Darwin, Biographical Memoirs of Fellows of the Royal Society, 4, 102 (1958) 
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Complexity of the many-body Ψ

Not a problem only 
in the ‘60s! 

1078 entries: would 
need to store 1 

entry on each atom 
in the universe!2 variables: 

102 numbers: 
~2kB

3 variables: 
103 numbers: 

~16kB

Example: “loose” grid with only 10 points per direction
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Energy of a collection of atoms

• Te: quantum kinetic energy of the electrons 

• Ve-e: electron-electron interactions 

• VN-N: electrostatic nucleus-nucleus repulsion 

• Ve-N: electrostatic electron-nucleus attraction 
(electrons in the field of all the nuclei)

Ĥ = T̂e + T̂N + V̂e−e + V̂N−N + V̂e−N
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Electrons and Nuclei

• We treat only the electrons as quantum particles, in 
the field of the fixed (or slowly varying) nuclei 

• This is generically called the adiabatic or Born-
Oppenheimer approximation 

• Adiabatic means that there is no coupling between 
different electronic surfaces; B-O no influence of the 
ionic motion on one electronic surface.
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Matrix Formulation (I)

  Ĥ ψ = E ψ

  
ψ = cn φn

n=1,k
∑ φn{ }  orthogonal

φm Ĥ ψ = E φm ψ

cn φm
n=1,k
∑ Ĥ φn = Ecm
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Matrix Formulation (II)

Hmncn
n=1,k
∑ = Ecm

H11 ...... H1k

. .

. .

. .
Hk1 ...... Hkk

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⋅

c1
.
.
.
ck

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= E

c1
.
.
.
ck

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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Matrix Formulation (III)

  

det

H11 − E ...... H1k

. H22 − E .

. .

. .
Hk1 ...... Hkk − E

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= 0
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Variational Principle

  
E Ψ⎡⎣ ⎤⎦ =

Ψ Ĥ Ψ

Ψ Ψ
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Variational Principle

  
E Ψ⎡⎣ ⎤⎦ =

Ψ Ĥ Ψ

Ψ Ψ

	 If                    , then Ψ is the ground state 
wavefunction, and viceversa

  E Ψ⎡⎣ ⎤⎦ ≥ E0

  E Ψ⎡⎣ ⎤⎦ = E0
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Variational principle (proof)

Equality holds only if we guessed the exact 
ground state wave function
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Energy of an Hydrogen Atom

  
Ψα Ψα = π

C2

α 3 , Ψα −
1
2
∇2 Ψα = π

C2

2α
Ψα −

1
r
Ψα = −π

C2

α 2

  
Eα =

Ψα Ĥ Ψα

Ψα Ψα

  
Ψα = C exp −αr( )

<latexit sha1_base64="KB+GpS9boNwfIzBbMglww08fU34=">AAACjXicbVHbbtNAEF27XEq5NC2PCGlFxOWBWnZp0yIV1IIQPBZE0kpxFI3X42SVtb3dXaNG1vIPfB4fwDfwyjoxohdGWunonDMzqzOJFFybMPzp+Ss3bt66vXpn7e69+w/WOxubA11WimGflaJUpwloFLzAvuFG4KlUCHki8CSZvW/0k2+oNC+Lr2YucZTDpOAZZ2AcNe78iEHIKYzrOOeFpW9onClgNKJ1wxk8N/W7cqqstTFIqcrzf4Yw2N1+/X3piY+OrH1J47OzClL6wbVeHNvM3Ypa65d5mqCaWPp34Fb0Kui1Ig7suNMNg3BR9DqIWtAlbR2PO7/itGRVjoVhArQeRqE0oxqU4UygXYsrjRLYDCY4dLCAHPWoXkRn6VPHpDQrlXuFoQv2YkcNudbzPHHOHMxUX9Ua8n/asDLZ/qjmhawMFmy5KKsENSVt7kBTrpAZMXcAmOLur5RNwUVr3LUubUkUzNA0uURXU7gOBttB1At6n3e6hwdtQqvkEXlCXpCI7JFD8okckz5h5Lf32HvmPffX/V3/wH+7tPpe2/OQXCr/4x+hk8fO</latexit>

ωmin =
1

aBohr
→ 1

0.529 Å
, Eωmin = ↑1 Rydberg → ↑13.6 eV
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Mean-field approach

• Independent particle model (Hartree): each 
electron moves in an effective potential, 
representing the attraction of the nuclei and 
the average effect of the repulsive interactions 
of the other electrons 

• This average repulsion is the electrostatic 
repulsion of the average charge density of all 
other electrons 
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Hartree Equations

The Hartree equations can be obtained directly from the 
variational principle, once the search is restricted to the many-
body wavefunctions that are written as the product of single 
orbitals (i.e. we are working with independent electrons)
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The self-consistent field

• The single-particle Hartree operator is self-
consistent! It depends on the orbitals that are 
the solution of all other Hartree equations 

• We have n simultaneous integro-differential 
equations for the n orbitals 

• Solution is achieved iteratively
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Iterations to self-consistency

• Initial guess at the orbitals 
• Construction of all the operators 
• Solution of the single-particle pseudo-

Schrödinger equations 
• With this new set of orbitals, construct the 

Hartree operators again 
• Iterate the procedure until it (hopefully) 

converges
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Bush Differential Analyzer

Bush, J. Franklin Inst., 212, 447 (1931) 
Hartree, Nature 146, 319 (1940)
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